Synthesis of Functional Phosphines with Ortho-Substituted Aryl Groups: $2-RC_6H_4PH_2$ and $2-RC_6H_4P(SiMe_3)_2$ (R = 2-i-Pr- or 2-t-Bu-)

Julien Dugal-Tessier, Paul-Steffan Kuhn, Gregory R. Dake, and Derek P. Gates

Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1

Received 15 February 2010; revised 7 April 2010

ABSTRACT: The synthesis and characterization of 2i- $PrC_6H_4PCl_2$ (**3**), 2-t- $BuC_6H_4PCl_2$ (**4**), 2-i- $PrC_6H_4PH_2$ (**5**), 2-t- $BuC_6H_4PH_2$ (**6**), 2-i- $PrC_6H_4P(SiMe_3)_2$ (**7**), and 2-t- $BuC_6H_4P(SiMe_3)_2$ (**8**) are described. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 21:265– 270, 2010; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20606

INTRODUCTION

The development of chemically functional phosphines bearing sterically encumbering substituents has had a profound impact on the low-coordinate chemistry of phosphorus. For example, the employment *P*-substituents such as 2,4,6-Me₃C₆H₂- (mesityl, Mes) and 2,4,6-*t*-Bu₃C₆H₂- (supermesityl, Mes*) permitted the isolation of the phosphaalkene MesP=CPh₂ [1] and the diphosphene Mes*P=PMes* [2]. Recently, the development of bulkier and more sophisticated aryl substituents [e.g., 2,6-{2,4,6-(*i*-Pr)₃C₆H₂}₂C₆H₃- and 2,4,6-{CH(SiMe₃)₂}₃C₆H₂-] led to the isolable compounds of the heavier elements of the periodic table with low-coordination numbers [3].

Combining a P-aryl substituent with P-H or P-SiMe₃ functional groups at phosphorus results in reactive phosphines that are important building blocks in organic, main group, and organometallic chemistry [4,5]. Several representative reactions are shown in Scheme 1 to illustrate the utility of phosphines with P-Si functionalities. Phosphines with a single trimethylsilyl substituent may be employed to functionalize alkenes and alkynes **A** [6–12], ringopen epoxides **B** [13], add to aldehydes **C** [13–15], and support metal-catalyzed coupling reactions **D** [16–18]. In addition, bis(trimethylsilyl)phosphines are important precursors to diphosphenes **E** [19], and phosphaalkenes **F** [20] when appropriately bulky aryl substituents (Ar) are employed.

We [21], and others [22], are interested in the development of applications for phosphaalkenes in areas such as polymer science and catalysis (Scheme 2, I and II). We have demonstrated that a delicate balance between kinetic and thermodynamic stability is required to afford isolable but polymerizable monomers. For example, mesityl-substituted MesP=CPh₂ polymerizes [23], whereas we have been unsuccessful in polymerizing supermesityl-substituted Mes*P=CH₂ [24]. The polymerization of P=C bonds opens the door to the generation of a wide range of functional homopolymers, or block- or random-copolymers, that are effective in binding transition metals [25,26], forming self-assembled nanostructures, and as ligands for use

Correspondence to: Gregory R. Dake; e-mail: gdake@chem .ubc.ca. Derek P. Gates; e-mail: dgates@chem.ubc.ca. © 2010 Wiley Periodicals, Inc.

SCHEME 1

in polymer-supported catalysts [27]. In addition, we have recently been interested in the development of phosphaalkene-based ligands for use in asymmetric catalysis (Scheme 2, **II**) [28,29].

To tune the steric properties of phosphaalkenes for application in catalysis and polymer science, we have been interested in the development of moderately bulky P-aryl substituents with a single substituent in the ortho-position. Since (2- MeC_6H_4)P=CPh₂ was reported to be unstable [1], we pursued the preparation of systems with the slightly larger *i*-Pr or *t*-Bu substituent in the 2position of the aryl substituent. Herein, we report the synthesis of the new primary phosphines 2-i-PrC₆H₄PH₂ and 2-t-BuC₆H₄PH₂ as well as the bis(trimethylsilyl)phosphines 2-i-PrC₆H₄P(SiMe₃)₂ and 2-t-BuC₆H₄P(SiMe₃)₂. This synthetic methodology is amenable to the isolation of multigram quantities of material from commercially available starting materials.

SCHEME 2

RESULT AND DISCUSSION

The synthesis starts with aryl bromides 1 and 2, prepared from the corresponding commercially available aniline derivatives using a Sandmeyer reaction [30] (Scheme 3). The addition of magnesium metal to the aryl bromide (1 or 2) in tetrahydrofuran (THF) generates the respective Grignard reagents, which are then treated with $ClP(NEt_2)_2$ [31]. The use of diethylamino-protected chlorophosphine instead of PCl₃ ensures that only a single aryl-substitution occurs at phosphorus. Analysis of the product by ³¹P NMR spectroscopy confirms that only a single product is formed, and the chemical shift is consistent with its formulation as $2-RC_6H_4P(NEt_2)_2$ (R = *i*-Pr: $\delta = 94$; R = t-Bu: $\delta = 93$). Although it is possible to isolate the bis(aminophosphines), we found it more convenient to simply treat the crude product with anhydrous hydrogen chloride in CH₂Cl₂ to remove the diethylamino protecting groups. The dichlorides 3 and 4 are obtained in satisfactory overall yields after distillation (69% and 78%, respectively). The products were analyzed by ³¹P NMR spectroscopy (**3**: δ = 164, **4**: $\delta = 166$). These chemical shifts are similar to related dichloroarylphosphines such as MesPCl₂ $(\delta = 167)$ [32].

Reduction of the dichlorides **3** and **4** using LiAlH₄ affords primary phosphines **5** and **6** in good isolated yield (70% and 82%, respectively). Although phosphine **5** has previously been mentioned, its synthesis and characterization were not reported [33].

SCHEME 3

Analysis of the products using ³¹P NMR spectroscopy revealed triplet resonances that are characteristic of primary phosphines [5: $\delta = -127$ (t, ¹ $J_{PH} = 203$ Hz), 6: $\delta = -107$ ppm (t, ¹ $J_{PH} = 202$ Hz)]. Interestingly, these signals are shifted downfield when compared to MesPH₂(-149 ppm, t, ¹ $J_{PH} = 203$ Hz) [32] and the chemical shift for **6** is closer to alkyl phosphines such as *t*-BuPH₂ (-80 ppm, t, ¹ $J_{PH} = 180$ Hz) and (*cyclo*-C₆H₁₁)PH₂ (-111 ppm, t, ¹ $J_{PH} = 187$ Hz) [32]. Compounds **5** and **6** were further characterized by ¹H and ¹³C{¹H} NMR spectroscopy, and mass spectrometry, each of which supported the assigned structures. Owing to the difficulty handling pyrophoric phosphines **5** and **6**, elemental microanalysis could not be accurately obtained.

The final step in the preparation of bis(trimethylsilyl)phosphines **7** and **8** involves treating **5** or **6** with MeLi (2 equiv) followed by silylation using Me₃SiCl. The desired bis(trimethysilyl)phosphines were isolated in reasonable yield after distillation (**7**: 48%, **8**: 72%). Compound **7** and **8** were characterized by ³¹P, ¹H, and ¹³C{¹H} NMR spectroscopy, low-resolution and high-resolution mass spectrometry, and elemental analysis. Interestingly, the ³¹P chemical shift of **7** ($\delta = -153$) is similar to MesP(SiMe₃)₂ ($\delta = -164$), whereas that for **8** ($\delta = -135$) is similar to alkylsubstituted *cyclo*-C₆H₁₁P(SiMe₃)₂ ($\delta = -139$). The ¹H and ¹³C{¹H} NMR spectra of **7** and **8** are consistent with the proposed structures.

SUMMARY

A synthetic methodology has been developed to prepare new moderately bulky phosphines from commercially available 2-substituted anilines. The chlorides, hydrides, and silylides of 2-i-PrC₆H₄- and

2-t-BuC₆H₄-substituted phosphines have been prepared and fully characterized spectroscopically. This synthetic route is amenable to the preparation of multigram quantities of product in a linear fashion. The new bis(trimethylsilyl)arylphosphines (**7** and **8**) are of interest for the synthesis of new phosphaalkenes for applications as supporting ligands for metal-catalyzed organic transformations.

EXPERIMENTAL

General Procedures

All manipulations of air- and/or water-sensitive compounds were performed under a nitrogen atmosphere using standard Schlenk or glovebox techniques. Hexanes and CH_2Cl_2 were deoxygenated with nitrogen and dried by passing through a column containing activated alumina. THF was distilled from sodium/benzophenone ketyl. Reagents, 2-i-PrC₆H₄NH₂, 2-t-BuC₆H₄NH₂, Mg, Me₃SiCl, and LiAlH₄ were purchased from Aldrich and used as received. Anhydrous HCl was obtained from BOC Gases and used as received. MeLi in Et₂O was purchased from Aldrich and titrated with *N*benzylbenzamide prior to use.

¹H, ³¹P, and ¹³C{¹H} NMR spectra were recorded at room temperature on Bruker Avance 300 or 400 MHz spectrometers. 85% H₃PO₄ was used as an external standard ($\delta = 0.0$ for ³¹P). ¹H NMR spectra were referenced to residual protonated solvent, and ¹³C{¹H} NMR were referenced to the deuterated solvent. Elemental analyses were performed in the University of British Columbia Chemistry Microanalysis Facility. Mass spectra were recorded on a Kratos MS 50 instrument in EI mode (70 eV).

 $2-i-PrC_6H_4PCl_2$ (3). To a solution of Mg (2.97 g, 122 mmol) in THF (150 mL), 2-*i*-PrC₆H₄Br (20.3 g, 102 mmol) was added. After 30 min, the Grignard activated and the solution was refluxed for an additional 2 h. The mixture was cooled to r.t. and treated with ClP(NEt₂)₂ [31] (23.6 g, 112 mmol) and washed with THF (5 mL). The solvent was removed in vacuo, and the phosphine was extracted with hexanes (1 \times 100 mL, 2 \times 80 mL). The hexanes were removed in vacuo leaving crude 2-i-PrC₆H₄P(NEt₂)₂ as a colorless liquid with ³¹P NMR singlet resonance of 94 ppm. The crude solution of 2-i-PrC₆H₄P(NEt₂)₂ in CH_2Cl_2 (150 mL) was treated with gaseous dry HCl, and the mixture became darker, cloudy, and then clear. ³¹P NMR analysis of an aliquot removed from the reaction mixture indicated two signals at 221 ppm (PCl₃) and 167 ppm $(2-i-PrC_6H_4PCl_2)$. CH₂Cl₂ was evaporated in vacuo. The yellow solid was extracted with toluene $(3 \times 60 \text{ mL})$, filtered, and the solvent was removed in vacuo. The crude product was purified by vacuum distillation 95°C (0.01 mmHg) to afford **3** (15.5 g, 69%) as a colorless liquid.

³¹P NMR (162 MHz, CDCl₃): δ 164 (s); ¹H NMR (400 MHz, CDCl₃): δ 8.15–8.11 (m, 1H), 7.55–7.51 (m, 1H), 7.42–7.38 (m, 2H), 3.76 (sept, ³ $J_{\rm HH}$ = 7 Hz, 1H), 1.36 (d, ³ $J_{\rm HH}$ = 7 Hz, 6 H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 151.8 (d, $J_{\rm PC}$ = 31 Hz), 137.2 (d, $J_{\rm PC}$ = 56 Hz), 133.1, 130.6 (d, $J_{\rm PC}$ = 7 Hz), 127.2 (d, $J_{\rm PC}$ = 1 Hz), 125.7 (d, $J_{\rm PC}$ = 34 Hz), 31.1 (d, $J_{\rm PC}$ = 33 Hz), 24.4; MS (EI): m/z (%) 224, 222, 220 [7, 42, 66, M⁺], 209, 207, 202 [3, 15, 23, M-CH₃], 187, 186, 185 [10, 9, 32, M-Cl]; Anal Calcd for C₉H₁₁Cl₂P: C, 48.90; H, 5.02; found: C, 48.84; H, 5.02.

2-*t*-BuC₆H₄PCl₂ (**4**). Same procedure as described above for **3**. Used 2-*t*-BuC₆H₄Br (8.47 g, 40 mmol), Mg (1.16 g, 48 mmol), and PCl(NEt₃)₂ (9.27 g, 44 mmol). The crude product was purified by vacuum distillation 110°C (0.01 mmHg) to afford **4** (7.4 g, 78%) as a colorless liquid.

³¹P NMR (121 MHz, CDCl₃): δ 166 (s); ¹H NMR (400 MHz, CDCl₃): δ 8.36–8.31 (m, 1H), 7.46–7.36 (m, 3H), 1.57 (s, 9H); ¹³C{¹H} NMR (121 MHz, CDCl₃): δ 153.5 (d, $J_{PC} = 28$ Hz), 140.4 (d, $J_{PC} = 68$ Hz), 134.9, 132,4, 127.5, 125.2, 37.0, 33.7; HRMS (EI): Cacld for C₁₀H₁₃Cl₂P 234.0132; found: 234.0131; MS (EI): m/z(%) 236, 235, 234 [43, 24, 68, M⁺], 221, 220, 219 [18, 4, 27, M-Me], 201, 200, 199 [14, 10, 45, M-Cl], 147 [100, M-CH₅Cl₂], 133 [22, M-PCl₂]; Anal Calcd for C₁₀H₁₃Cl₂P: C, 51.09; H, 5.57; found: C, 50.97; H, 5.60.

 $2-i-PrC_6H_4PH_2$ (5). To a cooled (-78°C) solution of LiAlH₄ (2.1 g, 56 mmol) in Et₂O (300 mL), a

solution of **3** (15.5 g, 70 mmol) in Et_2O (15 mL) was added. The cooling bath was removed, and the solution was warmed to room temperature. ³¹P NMR analysis of an aliquot removed from the reaction mixture showed triplet resonance at -129 ppm. Degassed water (100 mL) was added to quench residual aluminum hydride. (Caution: Extreme care should be taken when adding the first few milliliters of water since quenching is highly exothermic and H₂ is evolved.) The ether layer was removed, and the aqueous layer extracted with Et₂O (150 mL, 100 mL). The organic layers were combined, and the solvent removed in vacuo. The crude product was purified by vacuum distillation 60°C (0.01 mmHg) to afford **5** (7.5 g, 70%) as colorless liquid. (Caution: The product is pyrophoric and very malodorous.)

³¹P NMR (162 MHz, CDCl₃): δ –127 (t, J_{PH} = 203 Hz); ¹H NMR (400 MHz, CDCl₃): δ 7.53–7.48 (m, 1H), 7.34–7.26 (m, 2H), 7.13–7.06 (m, 1H), 3.96 (d, J_{PH} = 203 Hz, 2H), 3.28 (sept, ³ J_{HH} = 7 Hz, 1H), 1.29 (d, ³ J_{HH} = 7 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 152 (d, J_{PC} = 13 Hz), 136 (d, J_{PC} = 7 Hz), 129, 128 (d, J_{PC} = 8 Hz), 126 (d, J_{PC} = 3 Hz), 125 (d, J_{PC} = 3Hz) 33 (d, J_{PC} = 15 Hz), 24; MS (EI): m/z (%) 153, 152 [100, 11, M⁺], 138, 137 [33, 4, M-Me] 120, 119 [13, 4, M-PH₂], 111, 110 [82, 9, M-C₃H₆], 91 [40, C₇H₇].

2-*t*-BuC₆ H_4PH_2 (6). Same procedure as described above for **5**. Used **4** (7.2 g, 31 mmol) and LiAlH₄ (0.873 g, 23 mmol). The crude product was purified by vacuum distillation 60°C (0.01 mmHg) to afford title compound (4.17 g, 82%) as a colorless liquid.

³¹P NMR (162 MHz, CDCl₃): δ –107 (t, ¹*J*_{PH} = 202 Hz); ¹H NMR (400 MHz, CDCl₃): δ 7.58–7.53 (m, 1H), 7.47–7.42 (m, 1H), 7.29–7.23 (m, 1H), 7.11–7.05 (m, 1H), 4.21 (d, ¹*J*_{PH} = 203 Hz, 2H), 1.52 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 154.3 (d, *J*_{PC} = 15 Hz), 140.0, 128.7, 127.8 (d, *J*_{PC} = 17 Hz), 126.6 (d, *J*_{PC} = 5 Hz), 125.8, 36.9, 31.3 (d, *J*_{PC} = 11 Hz); HRMS calcd for C₁₀H₁₅P: 166.0911; found: 166.0908; MS (EI): *m*/*z* (%) 167, 166 [7, 62, M⁺], 166 [100, M-H], 152, 151 [5, 56, M-Me], 134, 133 [3, 16, M-PH₂], 110, 109 [13, 44, M-*t*-Bu], 57 [28, *t*-Bu].

2-*i*-*PrC*₆*H*₄*P*(*SiMe*₃)₂ (**7**). To a cooled solution (-78°C) of **5** (7.0 g, 46 mmol) in THF (100 mL), MeLi in Et₂O (1.45 M, 70 mL, 101 mmol) was added. The reaction mixture was warmed to room temperature and stirred for 1 h whereafter the solution was cooled (-78°C) and treated with Me₃SiCl (13.5 mL, 106 mmol). ³¹P NMR analysis of an aliquot removed from the reaction mixture revealed

the presence of 2-*i*-PrC₆H₄P(SiMe₃)₂ at -153 ppm. Often, after the first lithiation a mixture of 2-*i*-PrC₆H₄P(SiMe₃)₂ and 2-*i*-PrC₆H₄PH(SiMe₃) was observed. In this instance, the reaction mixture was relithiated (20 mL) and silylated (3.6 mL) following the above-mentioned procedure. Typically, after one relithiation **7** was formed quantitatively (³¹P NMR spectroscopy). The solvent was removed in vacuo. The yellow solid was extracted with hexanes (2 × 100 mL, 50 mL), filtered, and the solvent was removed. The crude product was purified by vacuum distillation (113°C, 0.01 mmHg), affording title compound (6.6 g, 48%) as a colorless liquid.

³¹P NMR (162 MHz, CDCl₃): δ –153 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.50–7.46 (m, 1H), 7.34–7.25 (m, 2H), 7.10–7.04 (m, 1H), 3.98 (sept, ³*J*_{HH} = 7 Hz, 1H), 1.25 (d, ³*J*_{HH} = 7 Hz, 6H), 0.30 (s, 9H), 0.28 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.6 (d, *J*_{PC} = 21.5 Hz), 138.5 (d, *J*_{PC} = 6 Hz), 130.3 (d, *J*_{PC} = 11.5 Hz), 128.1, 125.6 (d, *J*_{PC} = 6 Hz), 124.9, 32.2 (d, *J*_{PC} = 24 Hz), 23.9, 1.6, 1.4; HRMS calcd for C₁₃H₂₉PSi₂: 296.1546; found: 296.1547; MS (EI): *m/z* (%) 297, 296 [6, 21, M⁺], 282, 281 [2, 6, M-Me], 224, 223 [4, 10, M-SiMe₃], 75, 74, 73 [4, 8, 100, SiMe₃]; Anal Calcd for C₁₅H₂₉PSi₂: C, 60.76; H, 9.86; found: C, 60.42; H, 9.84.

2-*t*-BuC₆H₄ $P(SiMe_3)_2$ (**8**). Same procedure as described above for **7**. Used **6** (4.1 g, 25 mmol), MeLi in Et₂O (1.5 M, 33 mL, 50 mmol) and TMSCl (6.3 mL, 50 mmol). The crude product was purified by vacuum distillation (130°C, 0.01 mmHg) to afford title compound (5.65 g, 72%) as a colorless liquid.

³¹P NMR (162 MHz, CDCl₃): δ –134 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.57–7.53 (m, 1H), 7.48–7.43 (m, 1H), 7.25–7.19 (m, 1H), 7.09–7.03 (m, 1H), 1.62 (d, *J*_{PH} = 1 Hz 9H), 0.29 (s, 9H), 0.28 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 156.7 (d, *J*_{PC} = 18 Hz), 142.6 (d, *J*_{PC} = 6 Hz), 130.8 (d, *J*_{PC} = 22 Hz), 127.7, 126.6 (d, *J*_{PC} = 8 Hz), 124.6, 37.4, 32.0 (d, *J*_{PC} = 11 Hz), 1.9, 1.8; HRMS calcd for C₁₆H₃₁PSi₂: 310.1702; Found: 310.1701; MS (EI): *m*/z (EI) 312, 311, 310 [2, 9, 32, M⁺], 296, 295 [3, 9, M-Me], 239, 238, 237 [4, 10, 49, M-SiMe₃], 74, 73 [7, 100, SiMe₃]; Anal Calcd for C₁₆H₃₁PSi₂: C, 61.88; H, 10.06; found: C, 61.90; H, 10.09.

REFERENCES

- [1] Klebach, T. C.; Lourens, R.; Bickelhaupt, F. J Am Chem Soc 1978, 100, 4886–4888.
- [2] Yoshifuji, M.; Shima, I.; Inamoto, N.; Hirotsu, K.; Higuchi, T. J Am Chem Soc 1981, 103, 4587– 4589.

- [3] See, for example: (a) Mizuhata, T.; Sasomori, T. Chem Rev 2009, 109, 3479–3511; (b) Rivard E.; Power, P. P. Dalton Trans 2008, 4336–4343; (c) Sasomori, T.; Tokitoh, N. Dalton Trans 2008, 1395– 1408; (d) Shah, S.; Protasiewicz, J. D. Coord Chem Rev 2000, 181–201; (e) Robinson, G. H. Acc Chem Res 1999, 32, 773–782.
- [4] Fritz, G.; Scheer, P. Chem Rev 2000, 100, 3341-3401.
- [5] Hayashi, M. Chem Rec 2009, 9, 236-245.
- [6] Hayashi, M.; Matsuura, Y.; Watanabe, Y. Tetrahedron Lett 2004, 45, 9167–9169.
- [7] Hayashi, M.; Matsuura, Y.; Watanabe, Y. Tetrahedron Lett 2005, 46, 5135–5138.
- [8] Hayashi, M.; Matsuura, Y.; Kurihara, K.; Maeda, D.; Nishimura, Y.; Morita, E.; Okasaka, M. Chem Lett 2007, 36, 634–635.
- [9] Hayashi, M.; Matsuura, Y.; Watanabe, Y. J Org Chem 2006, 71, 9248–9251.
- [10] Trepohl, V. T.; Oestreich, M. Chem Commun 2007, 3300–3302.
- [11] Trepohl, V. T.; Mori, S.; Itami, K.; Oestreich, M. Org Lett 2009, 11, 1091–1094.
- [12] Couret, C.; Escudie, J.; Satge, J.; Anh, N. T.; Soussan, G. J Organomet Chem 1975, 91, 11–30.
- [13] Hayashi, M.; Matsuura, Y.; Nishimura, Y.; Yamasaki, T.; Imai, Y.; Watanabe, Y. J Org Chem 2007, 72, 7798– 7800.
- [14] Matsuura, Y.; Yamasaki, T.; Watanabe, Y.; Hayashi, M. Tetrahedron: Asymmetry 2007, 18, 2129–2132.
- [15] Kolodiazhnyi, O. I.; Guliaiko, I. V.; Kolodiazhna, A. O. Tetrahedron Lett 2004, 45, 6955–6957.
- [16] Tunney, S. E.; Stille, J. K. J Org Chem 1987, 52, 748– 753.
- [17] Kazankova, M. A.; Chirkov, E. A.; Kochetkov, A. N.; Efimova, I. V.; Beletskaya, I. P. Tetrahedron Lett 1998, 40, 573–576.
- [18] Chan, V. S.; Bergman, R. G.; Toste, F. D. J Am Chem Soc 2007, 129, 15122–15123.
- [19] Smit, C. N.; Vanderknaap, T. A.; Bickelhaupt, F. Tetrahedron Lett 1983, 24, 2031–2034.
- [20] Yam, M.; Chong, J. H.; Tsang, C. W.; Patrick, B. O.; Lam, A. E.; Gates, D. P. Inorg Chem 2006, 45, 5225– 5234.
- [21] Bates, J. I.; Dugal-Tessier, J.; Gates, D. P. Dalton Trans 2010, 39, 3151–3159.
- [22] See, for example: (a) Le Floch, P. Coord Chem Rev 2006, 250, 627–681; (b) Takita, R.; Takada, Y.; Jensen, R. S.; Okazaki, M.; Ozawa, F. Organometallics 2008, 27, 6279–6285; (c) Hayashi, A.; Okazaki, M.; Ozawa, F. Orgaometallics 2007, 26, 5246–5249; (d) Deschamps, B.; Le Goff, X.; Ricard, L.; Le Floch, P. Heteroatom Chem 2007, 18, 363–371; (e) Smith, R. C.; Protasiewicz, J. D. J Am Chem Soc 2004, 126, 2268–2269; (f) Ionkin, A.; Marshal, W. Chem Commun 2003, 710–711; (g) Daugulis, O.; Brookhart, M.; White, P. S. Organometallics 2002, 21, 5935–5943; (h) Ozawa, F.; Okamota, H.; Kawagishi, S.; Yamamoto, S.; Minami, T.; Yoshifuji, M. J Am Chem Soc 2002, 124, 10968–10969.
- [23] Tsang, C. W.; Yam, M.; Gates, D. P. J Am Chem Soc 2003, 125, 1480–1481.
- [24] Tsang, C. W.; Rohrick, C. A.; Saini, T. S.; Patrick, B. O.; Gates, D. P. Organometallics 2004, 23, 5913– 5923.
- [25] Noonan, K. J. T.; Gillon, B. H.; Cappello, V.; Gates, D. P. J Am Chem Soc 2008, 130, 12876–12877.

- [26] Gillon, B. H.; Patrick, B. O.; Gates, D. P. Chem Commun 2008, 2161–2163.
- [27] Tsang, C. W.; Baharloo, B.; Riendl, D.; Yam, M.; Gates, D. P. Angew Chem, Int Ed 2004, 43, 5682-5685.
- [28] Dugal-Tessier, J.; Dake, G. R.; Gates, D. P. Angew Chem, Int Ed 2008, 47, 8064–8067. [29] Dugal-Tessier, J.; Dake, G. R.; Gates, D. P.
- Organometallics 2007, 26, 6481-6486.
- [30] Fey, N.; Howell, J. A. S.; Lovatt, J. D.; Yates, P. C.; Cunningham, D.; McArdle, P.; Gottlieb, H. E.; Coles, S. J. Dalton Trans 2006, 5464–5475.
- [31] King, R. B.; Sundaram, P. M. J Org Chem 1984, 49, 1784-1789.
- [32] Becker, G.; Mundt, O.; Rossler, M.; Schneider, E. Z Anorg Allg Chem 1978, 443, 42-52.
- [33] Han, L. B.; Tilley, T. D. J Am Chem Soc 2006, 128, 13698-13699.